14x^2+3.14=13x^2+10(3.14)

Simple and best practice solution for 14x^2+3.14=13x^2+10(3.14) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14x^2+3.14=13x^2+10(3.14) equation:



14x^2+3.14=13x^2+10(3.14)
We move all terms to the left:
14x^2+3.14-(13x^2+10(3.14))=0
We calculate terms in parentheses: -(13x^2+10(3.14)), so:
13x^2+10(3.14)
We add all the numbers together, and all the variables
13x^2+31.4
Back to the equation:
-(13x^2+31.4)
We get rid of parentheses
14x^2-13x^2-31.4+3.14=0
We add all the numbers together, and all the variables
x^2-28.26=0
a = 1; b = 0; c = -28.26;
Δ = b2-4ac
Δ = 02-4·1·(-28.26)
Δ = 113.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{113.04}}{2*1}=\frac{0-\sqrt{113.04}}{2} =-\frac{\sqrt{}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{113.04}}{2*1}=\frac{0+\sqrt{113.04}}{2} =\frac{\sqrt{}}{2} $

See similar equations:

| x-2.48=3.46 | | x+0.25/3-x=0.5 | | 2/9=2/3y | | 6x+2(3-x)=14 | | 8/13=y/11 | | 4p^2-8p-140=0 | | -8x+14=-2*4x-7) | | 2x-2/12=3x-1/21 | | (2x+3)+x+3=180 | | 2/5a=3 | | q+166=30 | | -6+x-3+x=2 | | 8y(y-4y)=0 | | 3x-18=72/12 | | (x−3)+14=2(4x+5) | | (4-x)=-3x+9 | | 3(1+5x)+4=127 | | -2x+5=3-4x | | 70=8x+46 | | x+1.6=3.74 | | |1x-17|=15 | | 9d+3d-2d+7-5d=0 | | h+8=2(h+1) | | |1x-17=15| | | |1x-17=15 | | X=3.14x14 | | 180=17x-24 | | h+8=(h+1) | | b-5/5=15 | | 7x+-3/12=2+x | | h+8=(h+1 | | 180=17x+24 |

Equations solver categories